August 2014
S M T W T F S
« Jul    
 12
3456789
10111213141516
17181920212223
24252627282930
31  

Recent Posts

DiceLockXTSDigestedFullBasedCheck, C++ program for Linux to verify DiceLock encryption cipher architecture with DiceLockXTSDigested class encrypting full file at once

DiceLockXTSDigestedFullBasedCheck is a C++ program for Linux to verify that DiceLockXTSDigested class implementing one of DiceLock different architectures is working as expected.

DiceLockXTSDigested class is the cryptographic architecture aimed to storage devices based on XTS operation mode (XEX-based tweaked-codebook mode with ciphertext stealing encryption algorithm) and providing same intrinsic characteristics of DiceLock cipher architecture.

DiceLockXTSDigested class is the class that implements DiceLock architecture with the following characteristics:
– base encryption cipher/decipher is a block cipher working with symmetric key,
– any hash digest algorithm is used to generate message hash digest from plaintext to be encrypted,
ciphertext plus ciphered hash digest of plaintext is checked for random number test properties,
– any function that is able to change original symmetric key with new values,
bit random number tests that can verify that encrypted ciphertext is at random.

Current algorithm classes that can be used with DiceLockXTSDigested architecture are:

– as base encryption cipher/decipher:

  • any of following block ciphers:
      AES (Advanced Encryption Standard) with 128, 192 or 256 key bits,
      Camellia with 128, 192 or 256 key bits,
      Serpent with 128, 192 or 256 key bits,
      Twofish with 128, 192 or 256 key bits, or
  • – hash digest algorithms: Sha 1, Sha 224, Sha 256, Sha 384, Sha 512, Ripemd 128, Ripemd 160, Ripemd 256, Ripemd 320, Md 2, Md 4 and Md5,
    – symmetric key changers: IncreaseKeyModifier_6_0_0_1 and DecreaseKeyModifier_6_0_0_1,
    – random number tests: Frequency, Block Frequency, Cumulative Sum Forward, Cumulative Sum Reverse, Runs, Longest Run Of Ones, Rank, Universal, Approximate Entropy, Serial, Discrete Fourier Transform tests and random number test Suite with any or all previous enumerated random number tests.

    Because DiceLockXTSDigested class can work on full length plaintext length or sector based length, there are different alternatives for encryption/decryption, we have split DiceLockXTSDigested class tests in two main C++ program tests:
    DiceLockXTSDigestedSectorBasedCheck C++ Source Code program applying DiceLockXTSDigested encryption/decryption on sector base,, and
    DiceLockXTSDigestedFullBasedCheck C++ Source Code program applying DiceLockXTSDigested encryption/decryption on full plaintext length basis,.

    In this test we verify DiceLockXTSDigestedFullBasedCheck C++ Source Code program encryption/decryption on full plaintext length basis with the configuration shown below.

    In order to verify that DiceLockXTSDigested class is performing the following program has been used. Execution call must be:
    DiceLockXTSDigestedFullBasedCheck [block cipher][hash algorithm][key modifier][stream type] log_output_file, where the different values can be easily infered from source code.

    Test program in C++ language:

    // DiceLockXTSDigestedFullBasedCheck.cpp : Defines the entry point for the console application.
    //
    
    #include 
    #include 
    #include "DiceLockCipher.h"
    
    using namespace DiceLockSecurity::Cipher::SymmetricCipher::DiceLock;
    using namespace DiceLockSecurity::Cipher::SymmetricCipher::BlockCipher;
    
    #define MIN_LENGTH_TESTS	8
    #define MAX_LENGTH_TESTS	500000
    #define RANDOM_ALPHA		0.001
    #define FILE_NAME_LENGTH	300
    
    
    BlockCiphers SetBlockCipherType(unsigned char cipher) {
    
    	switch (cipher) {
    		case '0' :	return AES_128;
    		case '1' :	return AES_192;
    		case '2' :	return AES_256;
    		case '3' :	return Camellia_128;
    		case '4' :	return Camellia_192;
    		case '5' :	return Camellia_256;
    		case '6' :	return Serpent_128;
    		case '7' :	return Serpent_192;
    		case '8' :	return Serpent_256;
    		case '9' :	return Twofish_128;
    		case 'A' :	return Twofish_192;
    		case 'B' :	return Twofish_256;
    	}
    	return DiceLockSecurity::Cipher::SymmetricCipher::BlockCipher::NotDefined;
    }
    
    BaseHash* SetHash(unsigned char hash) {
    	BaseHash* hashObject;
    
    	hashObject = NULL;
    	switch (hash) {
    		case '0' :	hashObject = new Sha1();
    			break;
    		case '1' :	hashObject = new Sha224();
    			break;
    		case '2' :	hashObject = new Sha256();
    			break;
    		case '3' :	hashObject = new Sha384();
    			break;
    		case '4' :	hashObject = new Sha512();
    			break;
    		case '5' :	hashObject = new Ripemd128();
    			break;
    		case '6' :	hashObject = new Ripemd160();
    			break;
    		case '7' :	hashObject = new Ripemd256();
    			break;
    		case '8' :	hashObject = new Ripemd320();
    			break;
    		case '9' :	hashObject = new Md2();
    			break;
    		case 'A' :	hashObject = new Md4();
    			break;
    		case 'B' :	hashObject = new Md5();
    			break;
    	}
    	return hashObject;
    }
    
    BaseKeyModifier* SetKeyModifier(unsigned long int modify) {
    	BaseKeyModifier* modifier;
    
    	modifier = NULL;
    	if ( modify == '0' ) {
    		modifier = new IncreaseKeyModifier_6_0_0_1();
    	}
    	if ( modify == '1' ) {
    		modifier = new DecreaseKeyModifier_6_0_0_1();
    	}
    	return modifier;
    }
    
    void RemoveKeyModifier(BaseKeyModifier* modifier, unsigned long int modify) {
    
    	if ( modify == '0' ) {
    		delete (IncreaseKeyModifier_6_0_0_1*)modifier;
    	}
    	if ( modify == '1' ) {
    		delete (DecreaseKeyModifier_6_0_0_1*)modifier;
    	}
    }
    
    BaseCryptoRandomStream*	SetStreamType(unsigned char stream, unsigned long int bitLength) {
    	BaseCryptoRandomStream* streamObject;
    
    	streamObject = NULL;
    	switch (stream) {
    		case '0' :	streamObject = new DefaultCryptoRandomStream(bitLength);
    			break;
    		case '1' :	streamObject = new PhysicalCryptoRandomStream(bitLength);
    			break;
    	}
    	return streamObject;
    }
    
    void RemoveStreamType(BaseCryptoRandomStream* streamObject, unsigned char stream) {
    
    	switch (stream) {
    		case '0' :	delete (DefaultCryptoRandomStream*)streamObject;
    			break;
    		case '1' :	delete (PhysicalCryptoRandomStream*)streamObject;
    			break;
    	}
    }
    
    void SetRandomTestsAndAlpha(RandomTestSuite* suite) {
    
    	suite->AddFrequencyTest();
    	suite->AddBlockFrequencyTest();
    	suite->AddCumulativeSumForwardTest();
    	suite->AddLongestRunOfOnesTest();
    	suite->AddRunsTest();
    	suite->SetAlpha(RANDOM_ALPHA);
    }
    
    void VerifyDecryption(BaseCryptoRandomStream* plaintext, BaseCryptoRandomStream* decipheredtext, unsigned long int* correctDecipher, unsigned long int* incorrectDecipher) {
    
    	if ( plaintext->Equals(decipheredtext) ) {
    		(*correctDecipher)++;
    	}
    	else {
    		(*incorrectDecipher)++;
    	}
    }
    
    int main(int argc, char* argv[])
    {
    
    	unsigned long int performedTests;
    	unsigned long int length;
    	unsigned long long dataUnit;
    	unsigned long int startBlock;
    	unsigned long int reciphers;
    	unsigned long int maxReciphers;
    	unsigned long int correctDecipher;
    	unsigned long int incorrectDecipher;
    	unsigned char cipher;
    	unsigned char hash;
    	unsigned char keyModifier;
    	unsigned char dataStream;
    	char reciphersFile[FILE_NAME_LENGTH];
    	FILE* fp;
    	FILE* fr;
    
    	DiceLockXTSDigested*	diceLock;
    	XTS_Mode*				xtsMode;
    	RandomTestSuite*		randomSuite;
    	BaseHash*				hashDigest;
    	BaseKeyModifier*		modifier;
    	BaseCryptoRandomStream* messageDigest;
    	BaseCryptoRandomStream* key;
    	BaseCryptoRandomStream* plaintext;
    	BaseCryptoRandomStream* ciphertext;
    	BaseCryptoRandomStream* decipheredtext;
    
    	// Gets execution parameters from command line
    	cipher = argv[1][0];
    	hash = argv[1][1];
    	keyModifier = argv[1][2];
    	dataStream = argv[1][3];
    
    	// Pseudo-random generation, fixed intitialitation seed allows 
    	// re-run same test with identical data
    	srand(1);
    
    	performedTests = 0;
    	reciphers = 0;
    	maxReciphers = 0;
    	memset(reciphersFile, 0, FILE_NAME_LENGTH);
    	strcat(reciphersFile, argv[2]);
    	strcat(reciphersFile, ".reciphered");
    	if ( (fr = fopen(reciphersFile, "w")) == NULL ) {
    		printf(" ERROR OPENING FILE\n");
    		return 1;
    	}
    	fprintf(fr, "keyUC,plainUC,length,dataUnit,startBlock,reciphers\n");
    	correctDecipher = 0;
    	incorrectDecipher = 0;
    
    	for ( length = MIN_LENGTH_TESTS; length <= MAX_LENGTH_TESTS; length = length + 8 ) {
    
    		printf("length: %lu\n", length);
    		performedTests++;
    
    		// Specific XTS mode operation mode parameters
    		dataUnit = (unsigned long long)(rand());
    		startBlock = (unsigned long int)(rand() & 0x000000FF);
    
    		// Encryption
    		diceLock =  new DiceLockXTSDigested();
    		xtsMode = new XTS_Mode();
    		xtsMode->SetBlockCiphers(SetBlockCipherType(cipher));
    		diceLock->SetXTS_Mode(xtsMode);
    		randomSuite = new RandomTestSuite();
    		SetRandomTestsAndAlpha(randomSuite);
    		diceLock->SetRandomTestSuite(randomSuite);
    		hashDigest = SetHash(hash);
    		messageDigest = SetStreamType(dataStream, hashDigest->GetBitHashLength());
    		hashDigest->SetMessageDigest(messageDigest);
    		diceLock->SetHashDigester(hashDigest);
    		modifier = SetKeyModifier(keyModifier);
    		diceLock->SetKeyModifier(modifier);
    
    		key = SetStreamType(dataStream, diceLock->GetBitKeyLength());
    		plaintext = SetStreamType(dataStream, length);
    		ciphertext = SetStreamType(dataStream, diceLock->GetBitCiphertextLength(plaintext->GetBitLength()));
    		
    		key->FillUC((unsigned char)(rand() & 0x000000FF));
    		plaintext->FillUC((unsigned char)(rand() & 0x000000FF));
    
    		diceLock->Initialize();
    		diceLock->SetSymmetricKey(key);
    		diceLock->Cipher(plaintext, ciphertext, dataUnit, startBlock);
    
    		if ( diceLock->GetReciphers() > 0 ) {
    			reciphers++;
    			if ( maxReciphers < diceLock->GetReciphers() ) {
    				maxReciphers = diceLock->GetReciphers();
    			}
    			fprintf(fr, "%02x,%02x,%lu,%llu,%lu,%lu\n", key->GetUCPosition(0), plaintext->GetUCPosition(0), length, dataUnit, startBlock, diceLock->GetReciphers());
    		}
    
    		RemoveStreamType(messageDigest, dataStream);
    		delete hashDigest;
    		RemoveKeyModifier(modifier, keyModifier);
    		delete randomSuite;
    		delete xtsMode;
    		delete diceLock;
    
    		// Decryption
    		diceLock =  new DiceLockXTSDigested();
    		xtsMode = new XTS_Mode();
    		xtsMode->SetBlockCiphers(SetBlockCipherType(cipher));
    		diceLock->SetXTS_Mode(xtsMode);
    		hashDigest = SetHash(hash);
    		messageDigest = SetStreamType(dataStream, hashDigest->GetBitHashLength());
    		hashDigest->SetMessageDigest(messageDigest);
    		diceLock->SetHashDigester(hashDigest);
    		modifier = SetKeyModifier(keyModifier);
    		diceLock->SetKeyModifier(modifier);
    
    		decipheredtext = SetStreamType(dataStream, diceLock->GetBitDecipheredtextLength(ciphertext->GetBitLength()));
    
    		diceLock->Initialize();
    		diceLock->SetSymmetricKey(key);
    		diceLock->Decipher(ciphertext, decipheredtext, dataUnit, startBlock);
    
    		RemoveStreamType(messageDigest, dataStream);
    		delete hashDigest;
    		RemoveKeyModifier(modifier, keyModifier);
    		delete xtsMode;
    		delete diceLock;
    
    		// Verifying plaintext and decipheredtext
    		VerifyDecryption(plaintext, decipheredtext, &correctDecipher, &incorrectDecipher);
    
    		RemoveStreamType(key, dataStream);
    		RemoveStreamType(plaintext, dataStream);
    		RemoveStreamType(ciphertext, dataStream);
    		RemoveStreamType(decipheredtext, dataStream);
    	}
    	fclose(fr);
    
    	// Total Output 
    	if ( (fp = fopen(argv[2], "w")) == NULL ) {
    		printf(" ERROR OPENING FILE\n");
    		return 1;
    	}
    	fprintf(fp, "Verified:\n");
    	fprintf(fp, "---------\n");
    	fprintf(fp, "%s\n", argv[2]);
    	fprintf(fp, "\n");
    	fprintf(fp, "Number of streams tested: %lu\n", performedTests);
    	fprintf(fp, "\n");
    	fprintf(fp, "From length of shorter stream tested in bits: %d\n", MIN_LENGTH_TESTS);
    	fprintf(fp, "Up to length of larger stream tested in bits: %d\n", MAX_LENGTH_TESTS);
    	fprintf(fp, "\n");
    	fprintf(fp, "\n");
    	fprintf(fp, "Number of correct streams deciphered: %lu\n", correctDecipher);
    	fprintf(fp, "Number of incorrect streams deciphered: %lu\n", incorrectDecipher);
    	if ( incorrectDecipher == 0 ) {
    		fprintf(fp, "Incorrect deciphered streams = %lu ==> ---OK---\n", incorrectDecipher);
    	}
    	else {
    		fprintf(fp, "Incorrect deciphered streams = %lu ==> ---ERROR---\n", incorrectDecipher);
    	}
    	fprintf(fp, "\n");
    	fprintf(fp, "Total encrypted streams reciphered at least once: %lu\n", reciphers);
    	fprintf(fp, "Maximum number of reciphers performed over one stream being reciphered: %lu\n", maxReciphers);
    	fprintf(fp, "\n");
    	fprintf(fp, "File with reciphered stream data:\n");
    	fprintf(fp, "%s\n", reciphersFile);
    	fprintf(fp, "\n");
    	fclose(fp);
    
    	return 0;
    }
    
    

    All different tests are performed over 62.500 streams and we will post each one result promptly.

    152 comments to DiceLockXTSDigestedFullBasedCheck, C++ program for Linux to verify DiceLock encryption cipher architecture with DiceLockXTSDigested class encrypting full file at once

    Leave a Reply